College Algebra Formulas Tests - Use This to Study

Positive	Zero	Negative
$\|3 \mathrm{x}+5\|=4$	$\|3 \mathrm{x}+5\|=0$	$\|3 \mathrm{x}+5\|=-4$
becomes	becomes $3 \mathrm{x}+5=0$	has
$3 \mathrm{x}+5=4$ or $3 \mathrm{x}+5=-4$ (drop)(drop/sign flip)		No Solution

For inequalities involving absolute value:
...positive, rewrite as a compound or combined inequality without absolute value bars (see examples below)

$\begin{aligned} & > \\ & \text { or } \\ & \geq \end{aligned}$	$\|3 \mathrm{x}+5\|>4$ becomes $3 \mathrm{x}+5>4$ or $3 \mathrm{x}+5<-4$ (drop) \quad (drop/double sign flip)	$\|3 \mathrm{x}+5\| \geq 7$ becomes $3 \mathrm{x}+5 \geq 7$ or $3 \mathrm{x}+5 \leq-7$ (drop) \quad (drop/double sign flip)
< or \leq	$\|3 x+5\|<9$ becomes the combined inequality $-9<3 x+5<9$	$\|3 x+5\| \leq 2$ becomes the combined inequality $-2 \leq 3 x+5 \leq 2$

...zero, rewrite as an equality or inequality, or state the solution as "All Real Numbers" or "No Solution" (see examples below)

$>$	$\|3 \mathrm{x}+5\|>0$	
or r \geq	becomes the inequality $3 \mathrm{x}+5 \neq 0$	$\|3 \mathrm{x}+5\| \geq 0$ has the solution $\|$All Real Numbers $<$ or \leq
	$\|3 \mathrm{x}+5\|<0$	has
No Solution	$\|3 \mathrm{x}+5\| \leq 0$	becomes the equality $3 \mathrm{x}+5=0$

...negative, state the solution as "All Real Numbers" or "No Solution" (see examples below)

$>$ or \geq	$\|3 \mathrm{x}+5\|>-4$ has the solution All Real Numbers	$\|3 \mathrm{x}+5\| \geq-7$ has the solution All Real Numbers
$<$ or \leq	$\begin{array}{\|c\|} \hline \hline\|3 \mathrm{x}+5\|<-9 \\ \hline \text { has } \\ \hline \text { No Solution } \\ \hline \end{array}$	$\|3 \mathrm{x}+5\| \leq-2$ has No Solution

Some equation forms of a line:

Slope-Intercept Form
$y=m x+b$

Point-Slope Form
$y-y_{1}=m\left(x-x_{1}\right)$

Standard/General Form
$A x+B y=C$

Some equation forms of a circle:

Standard Form

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

General Form
$x^{2}+y^{2}+a x+b y+c=0$

The average rate of change of a function from a to b is $\frac{f(b)-f(a)}{b-a}$
Given a line passing through points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, the slope m of the line is $m=\frac{r i s e}{r u n}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ as long as $x_{2} \neq x_{1}$

Some equation forms of a parabola:
Vertex Form
$y=a(x-h)^{2}+k$

$$
\begin{gathered}
\text { Standard Form } \\
y=a x^{2}+b x+c, \text { with vertex }\left(-\frac{b}{2 a}, c-\frac{b^{2}}{4 a}\right)
\end{gathered}
$$

The Law of Exponents:
Given $a>0$ with $a \neq 1$: If $a^{u}=a^{v}$ then $u=v$

SUMMARY Properties of Logarithms

In the list that follows, a, b, M, N, and r are real numbers. Also, $a>0, a \neq 1, b>0, b \neq 1, M>0$, and $N>0$.
Definition $\longrightarrow y=\log _{a} x$ means $x=a^{y}$
Properties of logarithms

$$
\begin{array}{ll}
\log _{a} 1=0 \quad \log _{a} a=1 & \log _{a} M^{r}=r \log _{a} M \\
a^{\log _{a} M}=M=\log _{a} a^{r}=r & a^{x}=e^{x \ln a} \\
\log _{a}(M N)=\log _{a} M+\log _{a} N & \text { If } M=N, \text { then } \log _{a} M=\log _{a} N . \\
\log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N & \text { If } \log _{a} M=\log _{a} N, \text { then } M=N
\end{array}
$$

Change-of-Base Formula $\longrightarrow \log _{a} M=\frac{\log _{b} M}{\log _{b} a}$
The compound interest formula states that $F=P\left(1+\frac{r}{n}\right)^{n t}$
The continuously compounded interest formula states that $F=P e^{r t}$
The exponential law states that an amount A varies with time t according to the function $A(t)=A_{0} e^{k t}$ As long as the start time is 0 , the value of k can be determined using the adder a and either the multiplier m or the divider d :
$k=\frac{\ln m}{a} \quad$ or $\quad k=\frac{\ln (1 / d)}{a}$

